A Pro to His mutation in active site of thioredoxin increases its disulfide-isomerase activity 10-fold. New refolding systems for reduced or randomly oxidized ribonuclease.

نویسندگان

  • J Lundström
  • G Krause
  • A Holmgren
چکیده

Thioredoxin (Trx) from Escherichia coli was compared with bovine protein disulfide-isomerase (PDI) for its ability to catalyze native disulfide formation in either reduced or randomly oxidized (scrambled) ribonuclease A (RNase). On a molar basis, a 100-fold higher concentration of Trx than of PDI was required to give the same rate of native disulfide formation measured as recovery of RNase activity. A Pro-34 to His (P34H Trx) mutation in the active site of E. coli Trx (WCGPC), mimicking the two suggested active sites in PDI (WCGHC), increased the catalytic activity in disulfide formation about 10-fold. The mutant P34H Trx displayed a 35-mV higher redox potential (E'0) of the active site disulfide/dithiol relative to wild type Trx, making it more similar to the redox potential observed for PDI. This higher redox potential correlates well with the enhanced activity and suggests a role for the histidine side chain. Enzymatic isomerization of disulfides in scrambled, oxidized RNase requires the presence of a catalytic thiol such as GSH to initiate the thiol-disulfide interchange. Bovine thioredoxin reductase, together with NADPH, could replace GSH. For oxidative folding of reduced RNase in air with Trx, P34H Trx, or PDI, catalytic amounts of sodium selenite (1 microM) resulted in rapid disulfide formation and high yields of ribonuclease activity equivalent to previously known redox buffers of GSH and GSSG. These results demonstrate no obligatory role for glutathione in disulfide formation. A possible mechanism for the unknown thiol oxidative process accompanying folding and protein disulfide formation in vivo is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

The CXC motif: a functional mimic of protein disulfide isomerase.

Protein disulfide isomerase (PDI) utilizes the active site sequence Cys-Gly-His-Cys (CGHC; E degrees ' = -180 mV) to effect thiol-disulfide interchange during oxidative protein folding. Here, the Cys-Gly-Cys-NH(2) (CGC) peptide is shown to have a disulfide reduction potential (E degrees ' = -167 mV) that is close to that of PDI. This peptide has a thiol acid dissociation constant (pK(a) = 8.7) ...

متن کامل

Functional characterization of ERp18, a new endoplasmic reticulum-located thioredoxin superfamily member.

Native disulfide bond formation in the endoplasmic reticulum is a critical process in the maturation of many secreted and outer membrane proteins. Although a large number of proteins have been implicated in this process, it is clear that our current understanding is far from complete. Here we describe the functional characterization of a new 18-kDa protein (ERp18) related to protein-disulfide i...

متن کامل

The relative protein disulphide isomerase (PDI) activities of gonadotrophins, thioredoxin and PDI.

The three-dimensional configuration assumed by a polypeptide chain occurs spontaneously, with or without the participation of molecular chaperones, and is due to the combined interactions of the amino acids in the chain. In the case of disulphide-bond containing proteins, one or more enzymes catalyse the random cleavage and correct reformation of nascent protein disulphide bonds, e.g. protein d...

متن کامل

Characterization of ferredoxin:thioredoxin reductase modified by site-directed mutagenesis.

Ferredoxin:thioredoxin reductase (FTR) is a key regulatory enzyme of oxygenic photosynthetic cells involved in the reductive regulation of important target enzymes. It catalyzes the two-electron reduction of the disulfide of thioredoxins with electrons from ferredoxin involving a 4Fe-4S cluster and an adjacent active-site disulfide. We replaced Cys-57, Cys-87, and His-86 in the active site of S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 267 13  شماره 

صفحات  -

تاریخ انتشار 1992